dc.contributor.author | Olevskij, Aleksandr M. | |
dc.contributor.author | Ulanovskii, Alexander | |
dc.date.accessioned | 2009-03-20T12:00:38Z | |
dc.date.accessioned | 2016-10-05T14:14:12Z | |
dc.date.available | 2009-03-20T12:00:38Z | |
dc.date.available | 2016-10-05T14:14:12Z | |
dc.date.issued | 2009-03-11 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1151 | |
dc.description | Research in Pairs 2009 | en_US |
dc.description.abstract | Let $\Lambda \subset \mathbb{R}$ be a uniformly discrete sequence and $S \subset \mathbb{R}$ a compact set. We prove that if there exists a bounded sequence of functions in Paley-Wiener space $PW_s$, which approximates $\delta$-functions on $\Lambda$ with $l^2$-error $d$, then measure$(S) \geq 2\pi(1-d^2)D^+(\Lambda)$. This estimate is sharp for every $d$. Analogous estimate holds when the norms of approximating functions have a moderate growth, and we find a sharp growth restriction. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2009,17 | |
dc.subject | Paley-Wiener space | en_US |
dc.subject | Bernstein space | en_US |
dc.subject | Set of interpolation | en_US |
dc.subject | Approximation of discrete functions | en_US |
dc.title | Approximation of discrete functions and size of spectrum | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2009-17 | |
local.scientificprogram | Research in Pairs 2009 | |
local.series.id | OWP-2009-17 | |
dc.identifier.urn | urn:nbn:de:101:1-200907022557 | |
dc.identifier.ppn | 1649512732 | |