Zur Kurzanzeige

dc.contributor.authorBodnarchuk, Lesya
dc.contributor.authorDrozd, Jurij A.
dc.contributor.authorGreuel, Gert-Martin
dc.date.accessioned2009-03-20T12:00:40Z
dc.date.accessioned2016-10-05T14:14:12Z
dc.date.available2009-03-20T12:00:40Z
dc.date.available2016-10-05T14:14:12Z
dc.date.issued2009-03-13
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1154
dc.descriptionResearch in Pairs 2009en_US
dc.description.abstractIn 1957 Atiyah classified simple and indecomposable vector bundles on an elliptic curve. In this article we generalize his classification by describing the simple vector bundles on all reduced plane cubic curves. Our main result states that a simple vector bundle on such a curve is completely determined by its rank, multidegree and determinant. Our approach, based on the representation theory of boxes, also yields an explicit description of the corresponding universal families of simple vector bundles.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2009,20
dc.subjectsimple vector bundles and their modulien_US
dc.subjectdegeneration of an elliptic curveen_US
dc.subjecttame and wild small reductionen_US
dc.titleSimple vector bundles on plane degenerations of an elliptic curveen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2009-20
local.scientificprogramResearch in Pairs 2009
local.series.idOWP-2009-20
local.subject.msc14
local.subject.msc16
dc.identifier.urnurn:nbn:de:101:1-20090831142
dc.identifier.ppn1649512872


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige