Show simple item record

dc.contributor.authorDi Francesco, Philippe
dc.contributor.authorKedem, Rinat
dc.date.accessioned2009-03-20T12:00:44Z
dc.date.accessioned2016-10-05T14:14:13Z
dc.date.available2009-03-20T12:00:44Z
dc.date.available2016-10-05T14:14:13Z
dc.date.issued2009-03-17
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1158
dc.descriptionResearch in Pairs 2009en_US
dc.description.abstractWe prove a conjecture of Kontsevich regarding the solutions of rank two recursion relations for non-commutative variables which, in the commutative case, reduce to rank two cluster algebras of affine type. The conjecture states that solutions are positive Laurent polynomials in the initial cluster variables. We prove this by use of a non-commutative version of the path models which we used for the commutative case.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2009,24
dc.titleDiscrete non-commutative integrability: the proof of a conjecture by M. Kontsevichen_US
dc.typePreprinten_US
dc.identifier.doi10.14760/OWP-2009-24
local.scientificprogramResearch in Pairs 2009
local.series.idOWP-2009-24


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record