Zur Kurzanzeige

dc.contributor.authorAnderson, J. M.
dc.contributor.authorHinkkanen, Aimo
dc.date.accessioned2009-03-20T12:00:45Z
dc.date.accessioned2016-10-05T14:14:13Z
dc.date.available2009-03-20T12:00:45Z
dc.date.available2016-10-05T14:14:13Z
dc.date.issued2009-03-18
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1159
dc.descriptionResearch in Pairs 2009en_US
dc.description.abstractLet $f_1,..., f_p$ be entire functions that do not all vanish at any point, so that $(f_1,..., f_p)$ is a holomorphic curve in $\mathbb{CP}^{p-1}$. We introduce a new and more careful notion of counting the order of the zero of a linear combination of the functions $f_1,..., f_p$ at any point where such a linear combination vanishes, and, if all the $f_1,..., f_p$ are polynomials, also at infinity. This enables us to formulate an inequality, which sometimes holds as an identity, that sharpens the classical results of Cartan and others.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2009,25
dc.subjectHolomorphic curvesen_US
dc.subjectprojective spaceen_US
dc.subjectzeros value distributionen_US
dc.subjectNevanlinna theoryen_US
dc.subjectCartan theoryen_US
dc.titleA new counting function for the zeros of holomorphic curvesen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2009-25
local.scientificprogramResearch in Pairs 2009
local.series.idOWP-2009-25
local.subject.msc30
local.subject.msc32
dc.identifier.urnurn:nbn:de:101:1-20091208672
dc.identifier.ppn1649513364


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige