Show simple item record

dc.contributor.authorBarge, M.
dc.contributor.authorBruin, H.
dc.contributor.authorŠtimac, S.
dc.date.accessioned2010-03-20T12:00:48Z
dc.date.accessioned2016-10-05T14:14:14Z
dc.date.available2010-03-20T12:00:48Z
dc.date.available2016-10-05T14:14:14Z
dc.date.issued2010-03-8
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1162
dc.descriptionResearch in Pairs 2009en_US
dc.description.abstractWe prove the Ingram Conjecture, i.e., we show that the inverse limit spaces of every two tent maps with different slopes in the interval [1,2] are non-homeomorphic. Based on the structure obtained from the proof, we also show that every selfhomeomorphism of the inverse limit space of the tent map is pseudo-isotopic, on the core, to some power of the shift homeomorphism.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2010,02
dc.subjecttent mapen_US
dc.subjectinverse limit spaceen_US
dc.subjectunimodal mapen_US
dc.subjectclassificationen_US
dc.subjectpseudo-isotopyen_US
dc.titleThe ingram conjectureen_US
dc.typePreprinten_US
dc.identifier.doi10.14760/OWP-2010-02
local.scientificprogramResearch in Pairs 2009
local.series.idOWP-2010-02
local.subject.msc54
local.subject.msc37


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record