dc.contributor.author | Blagojevic, Pavle V. M. | |
dc.contributor.author | Blagojevic, Aleksandra | |
dc.contributor.author | Dimitrijevic McCleary, John | |
dc.date.accessioned | 2010-03-20T12:00:52Z | |
dc.date.accessioned | 2016-10-05T14:14:15Z | |
dc.date.available | 2010-03-20T12:00:52Z | |
dc.date.available | 2016-10-05T14:14:15Z | |
dc.date.issued | 2010-03-12 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1167 | |
dc.description | Research in Pairs 2009 | en_US |
dc.description.abstract | Algebraic topological methods are especially suited to determining the nonexistence of continuous mappings satisfying certain properties. In combinatorial problems it is sometimes possible to define a mapping from a space $X$ of configurations to a Euclidean space $\mathbb{R}^m$ in which a subspace, a discriminant, often an arrangement of linear subspaces $\mathcal{A}$, expresses a desirable condition on the configurations. Add symmetries of all these data under a group $G$ for which the mapping is equivariant. Removing the discriminant leads to the problem of the existence of an equivariant mapping from $X$ to $\mathbb{R}^m$- the discriminant. Algebraic topology may be applied to show that no such mapping exists, and hence the original equivariant mapping must meet the discriminant.
We introduce a general framework, based on a comparison of Leray-Serre spectral sequences. This comparison can be related to the theory of the Fadell-Husseini index. We apply the framework to: solve a mass partition problem (antipodal cheeses) in $\mathbb{R}^d$, determine the existence of a class of inscribed 5-element sets on a deformed 2-sphere, obtain two different generalizations of the theorem of Dold for the nonexistence of equivariant maps which generalizes the Borsuk-Ulam theorem. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2010,08 | |
dc.title | Spectral Sequences in Combinatorial Geometry: Cheeses, Inscribed Sets, and Borsuk-Ulam Type Theorems | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2010-08 | |
local.scientificprogram | Research in Pairs 2009 | |
local.series.id | OWP-2010-08 | |
dc.identifier.urn | urn:nbn:de:101:1-20100601391 | |
dc.identifier.ppn | 1649520018 | |