dc.contributor.author | Ornea, Liviu | |
dc.contributor.author | Verbitsky, Misha | |
dc.date.accessioned | 2010-03-20T12:00:55Z | |
dc.date.accessioned | 2016-10-05T14:14:15Z | |
dc.date.available | 2010-03-20T12:00:55Z | |
dc.date.available | 2016-10-05T14:14:15Z | |
dc.date.issued | 2010-03-15 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1170 | |
dc.description | Research in Pairs 2010 | en_US |
dc.description.abstract | A manifold $M$ is locally conformally Kähler (LCK) if it admits a Kähler covering $\tilde{M}$ with monodromy acting by holomorphic homotheties. Let $M$ be an LCK manifold admitting a holomorphic conformal flow of diffeomorphisms, lifted to a non-isometric homothetic flow on $\tilde{M}$. We show that $M$ admits an automorphic potential, and the monodromy group of its conformal weight bundle is $\mathbb{Z}$. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2010,13 | |
dc.subject | Locally conformally Kähler manifoldKähler potential | en_US |
dc.subject | conformal flow | en_US |
dc.title | Locally conformally Kähler manifolds admitting a holomorphic conformal flow | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2010-13 | |
local.scientificprogram | Research in Pairs 2010 | |
local.series.id | OWP-2010-13 | |
local.subject.msc | 53 | |
dc.identifier.urn | urn:nbn:de:101:1-2010090917227 | |
dc.identifier.ppn | 1650180292 | |