Zur Kurzanzeige

dc.contributor.authorManujlov, Vladimir M.
dc.contributor.authorThomsen, Klaus
dc.date.accessioned2010-03-20T12:00:56Z
dc.date.accessioned2016-10-05T14:14:16Z
dc.date.available2010-03-20T12:00:56Z
dc.date.available2016-10-05T14:14:16Z
dc.date.issued2010-03-16
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1171
dc.descriptionResearch in Pairs 2010en_US
dc.description.abstractLet A, A' be separable $C^*$-algebras, $B$ a stable $\sigma$-unital $C^*$-algebra. Our main result is the construction of the pairing $[[A', A]] \times Ext^{-1/2}(A,B) \to Ext^{-1/2}(A',B)$, where $[[A', A]]$ denotes the set of homotopy classes of asymptotic homomorphisms from $A'$ to $A$ and $Ext^{-1/2}(A,B)$ is the group of semi-invertible extensions of $A$ by $B$. Assume that all extensions of $A$ by $B$ are semi-invertible. Then this pairing allows us to give a condition on $A'$ that provides semi-invertibility of all extensions of $A'$ by $B$. This holds, in particular, if $A$ and $A'$ are shape equivalent. A similar condition implies that if $Ext^{-1/2}$ coincides with $E$-theory (via the Connes-Higson map) for $A$ then the same holds for $A'$.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2010,16
dc.titleShape Theory and Extensions of C*-Algebrasen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2010-16
local.scientificprogramResearch in Pairs 2010
local.series.idOWP-2010-16
dc.identifier.urnurn:nbn:de:101:1-201010283024
dc.identifier.ppn1650317638


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige