dc.contributor.author | Bux, Kai-Uwe | |
dc.contributor.author | Köhl, Ralf | |
dc.contributor.author | Witzel, Stefan | |
dc.date.accessioned | 2011-03-20T12:01:03Z | |
dc.date.accessioned | 2016-10-05T14:14:17Z | |
dc.date.available | 2011-03-20T12:01:03Z | |
dc.date.available | 2016-10-05T14:14:17Z | |
dc.date.issued | 2011-05-8 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1179 | |
dc.description | Research in Pairs 2009 | en_US |
dc.description.abstract | We show that the finiteness length of an $S$-arithmetic subgroup $\Gamma$ in a noncommutative isotropic absolutely almost simple group $\mathcal{G}$ over a global function field is one less than the sum of the local ranks of $\mathcal{G}$ taken over the places in $S$. This determines the finiteness properties for arithmetic subgroups in isotropic reductive groups, confirming the conjectured finiteness properties for this class of groups. Our main tool is Behr-Harder reduction theory which we recast in terms of the metric structure of euclidean buildings. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2011,05 | |
dc.title | Higher Finiteness Properties of Reductive Arithmetic Groups in Positive Characteristic: the Rank Theorem | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2011-05 | |
local.scientificprogram | Research in Pairs 2009 | |
local.series.id | OWP-2011-05 | |
dc.identifier.urn | urn:nbn:de:101:1-201103013326 | |
dc.identifier.ppn | 1650780419 | |