Show simple item record

dc.contributor.authorBux, Kai-Uwe
dc.contributor.authorKöhl, Ralf
dc.contributor.authorWitzel, Stefan
dc.date.accessioned2011-03-20T12:01:03Z
dc.date.accessioned2016-10-05T14:14:17Z
dc.date.available2011-03-20T12:01:03Z
dc.date.available2016-10-05T14:14:17Z
dc.date.issued2011-05-8
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1179
dc.descriptionResearch in Pairs 2009en_US
dc.description.abstractWe show that the finiteness length of an $S$-arithmetic subgroup $\Gamma$ in a noncommutative isotropic absolutely almost simple group $\mathcal{G}$ over a global function field is one less than the sum of the local ranks of $\mathcal{G}$ taken over the places in $S$. This determines the finiteness properties for arithmetic subgroups in isotropic reductive groups, confirming the conjectured finiteness properties for this class of groups. Our main tool is Behr-Harder reduction theory which we recast in terms of the metric structure of euclidean buildings.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2011,05
dc.titleHigher Finiteness Properties of Reductive Arithmetic Groups in Positive Characteristic: the Rank Theoremen_US
dc.typePreprinten_US
dc.identifier.doi10.14760/OWP-2011-05
local.scientificprogramResearch in Pairs 2009
local.series.idOWP-2011-05


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record