Show simple item record

dc.contributor.authorBux, Kai-Uwe
dc.contributor.authorKöhl, Ralf
dc.contributor.authorWitzel, Stefan
dc.date.accessioned2011-03-20T12:01:03Z
dc.date.accessioned2016-10-05T14:14:17Z
dc.date.available2011-03-20T12:01:03Z
dc.date.available2016-10-05T14:14:17Z
dc.date.issued2011-05-8
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1179
dc.descriptionResearch in Pairs 2009en_US
dc.description.abstractWe show that the finiteness length of an $S$-arithmetic subgroup $\Gamma$ in a noncommutative isotropic absolutely almost simple group $\mathcal{G}$ over a global function field is one less than the sum of the local ranks of $\mathcal{G}$ taken over the places in $S$. This determines the finiteness properties for arithmetic subgroups in isotropic reductive groups, confirming the conjectured finiteness properties for this class of groups. Our main tool is Behr-Harder reduction theory which we recast in terms of the metric structure of euclidean buildings.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2011,05
dc.titleHigher Finiteness Properties of Reductive Arithmetic Groups in Positive Characteristic: the Rank Theoremen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2011-05
local.scientificprogramResearch in Pairs 2009
local.series.idOWP-2011-05
dc.identifier.urnurn:nbn:de:101:1-201103013326
dc.identifier.ppn1650780419


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record