Show simple item record

dc.contributor.authorDouglass, J. Matthew
dc.contributor.authorPfeiffer, Götz
dc.contributor.authorRöhrle, Gerhard
dc.date.accessioned2011-03-20T12:01:12Z
dc.date.accessioned2016-10-05T14:14:19Z
dc.date.available2011-03-20T12:01:12Z
dc.date.available2016-10-05T14:14:19Z
dc.date.issued2011-05-17
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1189
dc.descriptionResearch in Pairs 2010en_US
dc.description.abstractIn our recent paper [3], we claimed that both the group algebra of a finite Coxeter group W as well as the Orlik-Solomon algebra of W can be decomposed into a sum of induced one-dimensional representations of centralizers, one for each conjugacy class of elements of W, and gave a uniform proof of this claim for symmetric groups. In this note we outline an inductive approach to our conjecture. As an application of this method, we prove the inductive version of the conjecture for nite Coxeter groups of rank up to 2.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2011,16
dc.subjectCoxeter groupsen_US
dc.subjectreflection arrangementsen_US
dc.subjectdescent algebraen_US
dc.subjectdihedral groupsen_US
dc.titleAn inductive approach to coxeter arrangements and solomon's descent algebraen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2011-16
local.scientificprogramResearch in Pairs 2010
local.series.idOWP-2011-16
local.subject.msc20
local.subject.msc52
dc.identifier.urnurn:nbn:de:101:1-201105249933
dc.identifier.ppn1650929552


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record