Braid equivalences and the L-moves

View/ Open
Date
2011-05-19MFO Scientific Program
Research in Pairs 2010Series
Oberwolfach Preprints;2011,20Author
Lambropoulou, Sofia
Metadata
Show full item recordOWP-2011-20
Abstract
In this survey paper we present the L-moves between braids and how they can adapt and serve for establishing and proving braid equivalence theorems for various diagrammatic settings, such as for classical knots, for knots in knot complements, in c.c.o. 3–manifolds and in handlebodies, as well as for virtual knots, for flat virtuals, for welded knots and for singular knots. The L-moves are local and they provide a uniform ground for formulating and proving braid equivalence theorems for any diagrammatic setting where the notion of braid and diagrammatic isotopy is defined, the statements being first geometric and then algebraic.
Mathematics Subject Classification (MSC)
57Permalink
urn:nbn:de:101:1-201107133681Collections
Related items
Showing items related by title, author, creator and subject.
-
Zopfgruppen, die Yang–Baxter-Gleichung und Unterfaktoren
[SNAP-2021-005-DESNAP-2021-005-EN] Lechner, Gandalf (Mathematisches Forschungsinstitut Oberwolfach, 2021-06-24)Die Yang–Baxter-Gleichung ist eine faszinierende Gleichung, die in vielen Gebieten der Physik und der Mathematik auftritt und die am besten diagrammatisch dargestellt wird. Dieser Snapshot schlägt einen weiten Bogen ... -
A categorical model for the virtual braid group
[OWP-2011-19] Kauffman, Louis H.; Lambropoulou, Sofia (Mathematisches Forschungsinstitut Oberwolfach, 2011-05-18) -
Invariants of Closed Braids via Counting Surfaces
[OWP-2012-15] Brandenbursky, Michael (Mathematisches Forschungsinstitut Oberwolfach, 2012)A Gauss diagram is a simple, combinatorial way to present a link. It is known that any Vassiliev invariant may be obtained from a Gauss diagram formula that involves counting subdiagrams of certain combinatorial types. In ...