dc.contributor.author | Márquez-Corbella, Irene | |
dc.contributor.author | Martínez-Moro, Edgar | |
dc.contributor.author | Pellikaan, Ruud | |
dc.date.accessioned | 2012-03-20T12:01:26Z | |
dc.date.accessioned | 2016-10-05T14:14:22Z | |
dc.date.available | 2012-03-20T12:01:26Z | |
dc.date.available | 2016-10-05T14:14:22Z | |
dc.date.issued | 2012-03-20 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1204 | |
dc.description | Research in Pairs 2011 | en_US |
dc.description.abstract | This paper addresses the question of retrieving the triple $(\mathcal{X},\mathcal{P},\mathcal{E})$ from the algebraic geometry code $\mathcal{C}_L(\mathcal{X},\mathcal{P},\mathcal{E})$, where $\mathcal{X}$ is an algebraic curve over the finite field $\mathbb{F}_q, \mathcal{P}$ is an $n$-tuple of $\mathbb{F}_q$-rational points on $\mathcal{X}$ and $E$ is a divisor on $\mathcal{X}$. If deg($E$) $\geq 2g + 1$ where $g$ is the genus of $\mathcal{X}$, then there is an embedding of $\mathcal{X}$ onto $\mathcal{Y}$ in the projective space of the linear series of the divisor $E$. Moreover, if deg($E$) $\geq 2g + 2$, then $I(\mathcal{Y})$, the vanishing ideal of $\mathcal{Y}$, is generated by $I_2(\mathcal{Y})$, the homogeneous elements of degree two in $I(\mathcal{Y})$. If $n > 2$ deg($E$), then $I_2(\mathcal{Y}) = I_2(\mathcal{Q})$, where $\mathcal{Q}$ is the image of $\mathcal{P}$ under the map from $\mathcal{X}$ to $\mathcal{Y}$. These two results imply that certain algebraic geometry codes are not secure if used in the McEliece public-key cryptosystem. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2012,01 | |
dc.subject | Algebraic geometry codes | en_US |
dc.subject | Public-key cryptosystems | en_US |
dc.title | Cryptanalysis of Public-key Cryptosystems Based on Algebraic Geometry Codes | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2012-01 | |
local.scientificprogram | Research in Pairs 2011 | |
local.series.id | OWP-2012-01 | |
local.subject.msc | 14 | |
local.subject.msc | 94 | |
dc.identifier.urn | urn:nbn:de:101:1-201201203920 | |
dc.identifier.ppn | 1651245908 | |