Show simple item record

dc.contributor.authorMoroianu, Andrei
dc.contributor.authorSemmelmann, Uwe
dc.date.accessioned2012-04-24T12:00:00Z
dc.date.accessioned2016-10-05T14:14:22Z
dc.date.available2012-04-24T12:00:00Z
dc.date.available2016-10-05T14:14:22Z
dc.date.issued2012-04-24
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1206
dc.descriptionResearch in Pairs 2012en_US
dc.description.abstractWe give criteria for real, complex and quaternionic representations to define $s$-representations, focusing on exceptional Lie algebras defined by spin representations. As applications, we obtain the classification of complex representations whose second exterior power is irreducible or has an irreducible summand of co-dimension one, and we give a conceptual computation-free argument for the construction of the exceptional Lie algebras of compact type.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2012,03
dc.subjectS-representationsen_US
dc.subjectExceptional Lie algebrasen_US
dc.subjectIrreducible representationsen_US
dc.subjectRepresentation of Lie typeen_US
dc.titleInvariant Four-forms and Symmetric Pairsen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2012-03
local.scientificprogramResearch in Pairs 2012
local.series.idOWP-2012-03
local.subject.msc22
local.subject.msc20
local.subject.msc15
local.subject.msc17
local.subject.msc53
local.subject.msc57
dc.identifier.urnurn:nbn:de:101:1-201204249289
dc.identifier.ppn1651457867


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record