dc.contributor.author | Boltje, Robert | |
dc.contributor.author | Danz, Susanne | |
dc.date.accessioned | 2012-07-03T12:00:00Z | |
dc.date.accessioned | 2016-10-05T14:14:23Z | |
dc.date.available | 2012-07-03T12:00:00Z | |
dc.date.available | 2016-10-05T14:14:23Z | |
dc.date.issued | 2012-07-03 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1212 | |
dc.description | Research in Pairs 2012 | en_US |
dc.description.abstract | For a finite group $G$, we introduce a multiplication on the $\mathbb{Q}$-vector space with basis $\mathscr{S}_{G\times G}$, the set of subgroups of ${G \times G}$. The resulting $\mathbb{Q}$-algebra $\tilde{A}$ can be considered as a ghost algebra for the double Burnside ring $B(G,G)$ in the sense that the mark homomorphism from $B(G,G)$ to $\tilde{A}$ is a ring homomorphism. Our approach interprets $\mathbb{Q}B(G,G)$ as an algebra $eAe$, where $A$ is a twisted monoid algebra and $e$ is an idempotent in $A$. The monoid underlying the algebra $A$ is again equal to $\mathscr{S}_{G\times G}$ with multiplication given by composition of relations (when a subgroup of $G \times G$ is interpreted as a relation between $G$ and $G$). The algebras $A$ and $\tilde{A}$ are isomorphic via Möbius inversion in the poset $\mathscr{S}_{G\times G}$. As an application we improve results by Bouc on the parametrization of simple modules of $\mathbb{Q}B(G,G)$ and also of simple biset functors, by using results by Linckelmann and Stolorz on the parametrization of simple modules of finite category algebras. Finally, in the case where G is a cyclic group of order n, we give an explicit isomorphism between $\mathbb{Q}B(G,G)$ and a direct product of matrix rings over group algebras of the automorphism groups of cyclic groups of order $k$, where $k$ divides $n$. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2012,09 | |
dc.subject | Burnside ring | en_US |
dc.subject | Double Burnside ring | en_US |
dc.subject | Mark homomorphism | en_US |
dc.subject | Ghost ring | en_US |
dc.subject | Schur functor | en_US |
dc.subject | Biset | en_US |
dc.subject | Biset functor | en_US |
dc.subject | Twisted category algebra | en_US |
dc.title | Ghost Algebras of Double Burnside Algebras via Schur Functors | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2012-09 | |
local.scientificprogram | Research in Pairs 2012 | |
local.series.id | OWP-2012-09 | |
local.subject.msc | 19 | |
local.subject.msc | 20 | |
dc.identifier.urn | urn:nbn:de:101:1-201207047049 | |
dc.identifier.ppn | 1651531994 | |