Show simple item record

dc.contributor.authorBenson, David J.
dc.contributor.authorIyengar, Srikanth B.
dc.contributor.authorKrause, Henning
dc.contributor.authorStevenson, Greg
dc.date.accessioned2012-10-01T12:00:00Z
dc.date.accessioned2016-10-05T14:14:24Z
dc.date.available2012-10-01T12:00:00Z
dc.date.available2016-10-05T14:14:24Z
dc.date.issued2012-10-01
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1215
dc.descriptionResearch in Pairs 2012en_US
dc.description.abstractWe develop a suitable version of the stable module category of a finite group $G$ over an arbitrary commutative ring $k$. The purpose of the construction is to produce a compactly generated triangulated category whose compact objects are the finitely presented $kG$-modules. The main idea is to form a localisation of the usual version of the stable module category with respect to the filtered colimits of weakly injective modules. There is also an analogous version of the homotopy category of weakly injective $kG$-modules and a recollement relating the stable category, the homotopy category, and the derived category of $kG$-modules.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2012,12
dc.titleModule Categories for Group Algebras over Commutative Ringsen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2012-12
local.scientificprogramResearch in Pairs 2012
local.series.idOWP-2012-12
dc.identifier.urnurn:nbn:de:101:1-20121001646
dc.identifier.ppn1651771383


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record