Zur Kurzanzeige

dc.contributor.authorGoodwin, Simon M.
dc.contributor.authorRöhrle, Gerhard
dc.date.accessioned2012-12-04T12:00:01Z
dc.date.accessioned2016-10-05T14:14:24Z
dc.date.available2012-12-04T12:00:01Z
dc.date.available2016-10-05T14:14:24Z
dc.date.issued2012-12-04
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1217
dc.descriptionResearch in Pairs 2011en_US
dc.description.abstractLet $G$ be a connected reductive algebraic group defined over an algebraically closed field $\mathbb{k}$ of characteristic zero. We consider the commuting variety $\mathcal{C}(\mathfrak{u})$ of the nilradical $\mathfrak{u}$ of the Lie algebra $\mathfrak{b}$ of a Borel subgroup $B$ of $G$. In case $B$ acts on $\mathfrak{u}$ with only a finite number of orbits, we verify that $\mathcal{C}(\mathfrak{u})$ is equidimensional and that the irreducible components are in correspondence with the distinguished $B$-orbits in $\mathfrak{u}$. We observe that in general $\mathcal{C}(\mathfrak{u})$ is not equidimensional, and determine the irreducible components of $\mathcal{C}(\mathfrak{u})$ in the minimal cases where there are infinitely many $B$-orbits in $\mathfrak{u}$.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2012,14
dc.subjectCommuting varietiesen_US
dc.subjectBorel subalgebrasen_US
dc.titleOn commuting varieties of nilradicals of Borel subalgebras of reductive Lie algebrasen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2012-14
local.scientificprogramResearch in Pairs 2011
local.series.idOWP-2012-14
local.subject.msc20
local.subject.msc17
dc.identifier.urnurn:nbn:de:101:1-20121203396
dc.identifier.ppn1651911320


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige