Show simple item record

dc.contributor.authorHintermüller, Michael
dc.contributor.authorHinze, Michael
dc.contributor.authorHoppe, Ronald H. W.
dc.date.accessioned2016-10-10T10:32:44Z
dc.date.available2016-10-10T10:32:44Z
dc.date.issued2010
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1234
dc.descriptionOWLF 2009en_US
dc.description.abstractAdaptive finite element methods for optimization problems for second order linear elliptic partial di erential equations subject to pointwise constraints on the $\ell^2$-norm of the gradient of the state are considered. In a weak duality setting, i.e. without assuming a constraint quali cation such as the existence of a Slater point, residual based a posteriori error estimators are derived. To overcome the lack in constraint qualification on the continuous level, the weak Fenchel dual is utilized. Several numerical tests illustrate the performance of the proposed error estimators.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2010,15
dc.subjectAdaptive finite element methoden_US
dc.subjectposteriori errorsen_US
dc.subjectdualizationen_US
dc.subjectlow regularityen_US
dc.subjectpointwise gradient constraintsen_US
dc.subjectstate constraintsen_US
dc.subjectweak solutionsen_US
dc.titleWeak-duality based adaptive finite element methods for PDE-constrained optimization with pointwise gradient state-constraintsen_US
dc.typePreprinten_US
dc.identifier.doi10.14760/OWP-2010-15
local.scientificprogramOWLF 2009en_US
local.series.idOWP-2010-15
local.subject.msc65
local.subject.msc90
local.subject.msc49
dc.identifier.urnurn:nbn:de:101:1-2010090917248
dc.identifier.ppn1650181035


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record