Show simple item record

dc.contributor.authorSalepci, Nermin
dc.date.accessioned2016-10-10T12:36:39Z
dc.date.available2016-10-10T12:36:39Z
dc.date.issued2011
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1241
dc.descriptionOWLF 2011en_US
dc.description.abstractWe show that totally real elliptic Lefschetz brations that admit a real section are classified by their "real loci" which is nothing but an $S^1$-valued Morse function on the real part of the total space. We assign to each such real locus a certain combinatorial object that we call a $necklace diagram$. On the one hand, each necklace diagram corresponds to an isomorphism class of a totally real elliptic Lefschetz fibration that admits a real section, and on the other hand, it refers to a decomposition of the identity into a product of certain matrices in $PSL(2,Z)$. Using an algorithm to find such decompositions, we obtain an explicit list of necklace diagrams associated with certain classes of totally real elliptic Lefschetz fibrations. Moreover, we introduce refinements of necklace diagrams and show that refined necklace diagrams determine uniquely the isomorphism classes of the totally real elliptic Lefschetz fibrations which may not have a real section. By means of necklace diagrams we observe some interesting phenomena underlying special feature of real fibrations.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2011,13
dc.titleClassification of totally real elliptic Lefschetz fibrations via necklace diagramsen_US
dc.typePreprinten_US
dc.identifier.doi10.14760/OWP-2011-13
local.scientificprogramOWLF 2011en_US
local.series.idOWP-2011-13


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record