Show simple item record

dc.contributor.authorMadani, Farid
dc.contributor.authorNisse, Mounir
dc.date.accessioned2016-10-12T07:20:55Z
dc.date.available2016-10-12T07:20:55Z
dc.date.issued2011
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1247
dc.descriptionOWLF 2011en_US
dc.description.abstractIn this paper, we study the amoeba volume of a given $k$-dimensional generic analytic variety $V$ of the complex algebraic torus $(C^*)^n$. When $n>=2k$, we show that $V$ is algebraic if and only if the volume of its amoeba is finite. Moreover, in this case, we establish a comparison theorem for the volume of the amoeba and the coamoeba. Examples and applications to the $k$-linear spaces will be given.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2011,33
dc.subjectAnalytic varietiesen_US
dc.subjectAlgebraic varietiesen_US
dc.subjectAmoebasen_US
dc.subjectCoamoebasen_US
dc.subjectLogarithmic limit setsen_US
dc.subjectPhase limit setsen_US
dc.subjectSpherical polyhedronsen_US
dc.titleAnalytic Varieties with Finite Volume Amoebas are Algebraicen_US
dc.typePreprinten_US
dc.identifier.doi10.14760/OWP-2011-33
local.scientificprogramOWLF 2011en_US
local.series.idOWP-2011-33
local.subject.msc14
local.subject.msc32


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record