dc.contributor.author | Hering, Milena | |
dc.contributor.author | Maclagan, Diane | |
dc.date.accessioned | 2016-10-12T07:24:53Z | |
dc.date.available | 2016-10-12T07:24:53Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1248 | |
dc.description | OWLF 2010 | en_US |
dc.description.abstract | The $T$-graph of a multigraded Hilbert scheme records the zero and one-dimensional orbits of the $T=(K^*)^n$ action on the Hilbert scheme induced from the $T$-action on $\mathbb{A}^n$. It has vertices the $T$-fixed points, and edges the onedimensional $T$-orbits. We give a combinatorial necessary condition for the existence of an edge between two vertices in this graph. For the Hilbert scheme of points in the plane, we give an explicit combinatorial description of the equations defining the scheme parameterizing all one-dimensional torus orbits whose closures contain two given monomial ideals. For this Hilbert scheme we show that the $T$-graph depends on the ground field, resolving a question of Altmann and Sturmfels. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2011,34 | |
dc.title | The T-Graph of a Multigraded Hilbert Scheme | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2011-34 | |
local.scientificprogram | OWLF 2010 | en_US |
local.series.id | OWP-2011-34 | |
dc.identifier.urn | urn:nbn:de:101:1-201112137105 | |
dc.identifier.ppn | 1651080240 | |