Show simple item record

dc.contributor.authorBrandenbursky, Michael
dc.date.accessioned2016-10-12T07:40:31Z
dc.date.available2016-10-12T07:40:31Z
dc.date.issued2012
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1252
dc.descriptionOWLF 2012en_US
dc.description.abstractA Gauss diagram is a simple, combinatorial way to present a link. It is known that any Vassiliev invariant may be obtained from a Gauss diagram formula that involves counting subdiagrams of certain combinatorial types. In this paper we present simple formulas for an infinite family of invariants in terms of counting surfaces of a certain genus and number of boundary components in a Gauss diagram associated with a closed braid. We then identify the resulting invariants with partial derivatives of the HOMFLY-PT polynomial.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2012,15
dc.titleInvariants of Closed Braids via Counting Surfacesen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2012-15
local.scientificprogramOWLF 2012en_US
local.series.idOWP-2012-15
dc.identifier.urnurn:nbn:de:101:1-201212215904
dc.identifier.ppn1651937257


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record