dc.contributor.author | Brandenbursky, Michael | |
dc.date.accessioned | 2016-10-12T07:40:31Z | |
dc.date.available | 2016-10-12T07:40:31Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1252 | |
dc.description | OWLF 2012 | en_US |
dc.description.abstract | A Gauss diagram is a simple, combinatorial way to present a link. It is known that any Vassiliev invariant may be obtained from a Gauss diagram formula that involves counting subdiagrams of certain combinatorial types. In this paper we present simple formulas for an infinite family of invariants in terms of counting surfaces of a certain genus and number of boundary components in a Gauss diagram associated with a closed braid. We then identify the resulting invariants with partial derivatives of the HOMFLY-PT polynomial. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2012,15 | |
dc.title | Invariants of Closed Braids via Counting Surfaces | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2012-15 | |
local.scientificprogram | OWLF 2012 | en_US |
local.series.id | OWP-2012-15 | |
dc.identifier.urn | urn:nbn:de:101:1-201212215904 | |
dc.identifier.ppn | 1651937257 | |