dc.contributor.author | Brandenbursky, Michael | |
dc.contributor.author | Kȩdra, Jarek | |
dc.date.accessioned | 2016-10-12T08:21:19Z | |
dc.date.available | 2016-10-12T08:21:19Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1253 | |
dc.description | OWLF 2012 | en_US |
dc.description.abstract | Let $D^2$ be the open unit disc in the Euclidean plane and let $G := Diff(D^2; area)$ be the group of smooth compactly supported area-preserving diffeomorphisms of $D^2$. For every natural number $k$ we construct an injective homomorphism $Z^k → G$, which is bi-Lipschitz with respect to the word metric on $Z^k$ and the autonomous metric on $G$. We also show that the space of homogeneous quasi-morphisms vanishing on all autonomous diffeomorphisms in the above group is infinite dimensional. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2012,16 | |
dc.title | On the autonomous metric on the group of area-preserving diffeomorphisms of the 2-disc | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2012-16 | |
local.scientificprogram | OWLF 2012 | en_US |
local.series.id | OWP-2012-16 | |
dc.identifier.urn | urn:nbn:de:101:1-201212215922 | |
dc.identifier.ppn | 1651937273 | |