Show simple item record

dc.contributor.authorBrandenbursky, Michael
dc.contributor.authorKȩdra, Jarek
dc.date.accessioned2016-10-12T08:21:19Z
dc.date.available2016-10-12T08:21:19Z
dc.date.issued2012
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1253
dc.descriptionOWLF 2012en_US
dc.description.abstractLet $D^2$ be the open unit disc in the Euclidean plane and let $G := Diff(D^2; area)$ be the group of smooth compactly supported area-preserving diffeomorphisms of $D^2$. For every natural number $k$ we construct an injective homomorphism $Z^k → G$, which is bi-Lipschitz with respect to the word metric on $Z^k$ and the autonomous metric on $G$. We also show that the space of homogeneous quasi-morphisms vanishing on all autonomous diffeomorphisms in the above group is infinite dimensional.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2012,16
dc.titleOn the autonomous metric on the group of area-preserving diffeomorphisms of the 2-discen_US
dc.typePreprinten_US
dc.identifier.doi10.14760/OWP-2012-16
local.scientificprogramOWLF 2012en_US
local.series.idOWP-2012-16


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record