Show simple item record

dc.contributor.authorBartholdi, Laurent
dc.contributor.editorFirsching, Moritz
dc.contributor.editorNiediek, Johannes
dc.contributor.editorCederbaum, Carla
dc.date.accessioned2016-11-09T14:45:02Z
dc.date.available2016-11-09T14:45:02Z
dc.date.issued2016
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1258
dc.description.abstractProfinite objects are mathematical constructions used to collect, in a uniform manner, facts about infinitely many finite objects. We shall review recent progress in the theory of profinite groups, due to Nikolov and Segal, and its implications for finite groups.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesSnapshots of modern mathematics from Oberwolfach; 2016,14
dc.rightsAttribution-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.titleProfinite groupsen_US
dc.typeArticleen_US
dc.identifier.doi10.14760/SNAP-2016-014-EN
local.series.idSNAP-2016-014-EN
local.subject.snapshotAlgebra and Number Theory
local.subject.snapshotGeometry and Topology
dc.identifier.urnurn:nbn:de:101:1-201611178255
dc.identifier.ppn1653793090


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-ShareAlike 4.0 International