Zur Kurzanzeige

dc.contributor.authorAfshari, Bahareh
dc.contributor.authorLeigh, Graham E.
dc.date.accessioned2017-02-07T08:41:10Z
dc.date.available2017-02-07T08:41:10Z
dc.date.issued2016-12-30
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1275
dc.descriptionResearch in Pairs 2016en_US
dc.description.abstractWe present three finitary cut-free sequent calculi for the modal $μ$-calculus. Two of these derive annotated sequents in the style of Stirling’s ‘tableau proof system with names’ (2014) and feature special inferences that discharge open assumptions. The third system is a variant of Kozen’s axiomatisation in which cut is replaced by a strengthening of the $ν$-induction inference rule. Soundness and completeness for the three systems is proved by establishing a sequence of embeddings between the calculi, starting at Stirling’s tableau-proofs and ending at the original axiomatisation of the $μ$-calculus due to Kozen. As a corollary we obtain a completeness proof for Kozen’s axiomatisation which avoids the usual detour through automata or games.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2016,26
dc.titleFinitary Proof Systems for Kozen's μen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2016-26
local.scientificprogramResearch in Pairs 2016en_US
local.series.idOWP-2016-26
dc.identifier.urnurn:nbn:de:101:1-20170103958
dc.identifier.ppn165516290X


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige