Show simple item record

dc.contributor.authorAdamaszek, Michal
dc.contributor.authorAdams, Henry
dc.contributor.authorReddy, Samadwara
dc.date.accessioned2017-07-20T11:29:07Z
dc.date.available2017-07-20T11:29:07Z
dc.date.issued2017-04-25
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1291
dc.descriptionMSC: 05E45; 55U10; 68R05en_US
dc.descriptionResearch in Pairs 2015en_US
dc.description.abstractFor $X$ a metric space and $r > 0$ a scale parameter, the Vietoris–Rips complex $VR_<(X; r)$ (resp. $VR_≤(X; r)$) has $X$ as its vertex set, and a finite subset $\sigma \subseteq X$ as a simplex whenever the diameter of $\sigma$ is less than $r$ (resp. at most $r$). Though Vietoris–Rips complexes have been studied at small choices of scale by Hausmann and Latschev [12, 14], they are not well-understood at larger scale parameters. In this paper we investigate the homotopy types of Vietoris–Rips complexes of ellipses $Y = \{(x, y) ∈ \mathbb{R}^2|(x/a)^2 + y^2 = 1\}$ of small eccentricity, meaning $1 < a ≤ \sqrt{2}$. Indeed, we show there are constants $r_1 < r_2$ such that for all $r_1 < r < r_2$, we have $VR_<(Y;r) \simeq S^2$ and $VR≤(Y;r) \simeq \bigvee^5 S^2$, though only one of the two-spheres in $VR_≤(Y;r)$ is persistent. Furthermore, we show that for any scale parameter $r_1 < r < r_2$, there are arbitrarily dense subsets of the ellipse such that the Vietoris–Rips complex of the subset is not homotopy equivalent to the Vietoris–Rips complex of the entire ellipse. As our main tool we link these homotopy types to the structure of infinite cyclic graphs.
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2017,11
dc.subjectVietoris–Rips complexen_US
dc.subjectEllipsesen_US
dc.subjectHomotopyen_US
dc.subjectClique complexen_US
dc.subjectPersistent homologyen_US
dc.titleOn Vietoris-Rips Complexes of Ellipsesen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2017-11
local.scientificprogramResearch in Pairs 2015en_US
local.series.idOWP-2017-11
local.subject.msc05
local.subject.msc55
local.subject.msc68
dc.identifier.urnurn:nbn:de:101:1-201707054439
dc.identifier.ppn1659260531


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record