dc.contributor.author | Koelink, Erik | |
dc.contributor.author | van Pruijssen, Maarten | |
dc.contributor.author | Román, Pablo Manuel | |
dc.date.accessioned | 2017-09-07T08:07:15Z | |
dc.date.available | 2017-09-07T08:07:15Z | |
dc.date.issued | 2017-06-14 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1304 | |
dc.description | Research in Pairs 2017 | en_US |
dc.description.abstract | In Part 1 we study the spherical functions on compact symmetric pairs of arbitrary
rank under a suitable multiplicity freeness assumption and additional conditions
on the branching rules. The spherical functions are taking values in the spaces of linear
operators of a finite dimensional representation of the subgroup, so the spherical functions
are matrix-valued. Under these assumptions these functions can be described in terms of
matrix-valued orthogonal polynomials in several variables, where the number of variables is
the rank of the compact symmetric pair. Moreover, these polynomials are uniquely determined
as simultaneous eigenfunctions of a commutative algebra of differential operators.
In Part 2 we verify that the group case SU($n$+ 1) meets all the conditions that we impose
in Part 1. For any $k \in \mathbb{N}_0$ we obtain families of orthogonal polynomials in n variables with
values in the $N \times N$-matrices, where $N = \binom{n+k}{k}$
The case $k = 0$ leads to the classical
Heckman-Opdam polynomials of type $A_n$ with geometric parameter. For $k = 1$ we obtain
the most complete results. In this case we give an explicit expression of the matrix weight,
which we show to be irreducible whenever $n ≥ 2$. We also give explicit expressions of the
spherical functions that determine the matrix weight for $k = 1$. These expressions are used
to calculate the spherical functions that determine the matrix weight for general $k$ up to
invertible upper-triangular matrices. This generalizes and gives a new proof of a formula
originally obtained by Koornwinder for the case $n = 1$. The commuting family of differential
operators that have the matrix-valued polynomials as simultaneous eigenfunctions contains
an element of order one. We give explicit formulas for differential operators of order one
and two for $(n, k)$ equal to $(2, 1)$ and $(3, 1)$. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2017,16 | |
dc.title | Matrix Elements of Irreducible Representations of SU(n+1) x SU(n+1) and Multivariable Matrix-Valued Orthogonal Polynomials | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2017-16 | |
local.scientificprogram | Research in Pairs 2017 | en_US |
local.series.id | OWP-2017-16 | |
dc.identifier.urn | urn:nbn:de:101:1-20170807728 | |
dc.identifier.ppn | 165404959X | |