dc.contributor.author | Biswas, Shibananda | |
dc.contributor.author | Ghosh, Gargi | |
dc.contributor.author | Misra, Gadadhar | |
dc.contributor.author | Roy, Subrata Shyam | |
dc.date.accessioned | 2017-09-07T09:49:56Z | |
dc.date.available | 2017-09-07T09:49:56Z | |
dc.date.issued | 2017-07-20 | |
dc.identifier.uri | https://arxiv.org/abs/1707.02956 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1308 | |
dc.description | MSC: 47A13; 47B32; 20B30 | en_US |
dc.description | OWLF 2017 | en |
dc.description.abstract | The weighted Bergman spaces on the polydisc, $\mathbb A^{(\lambda)}(\mathbb D^n)$, $\lambda>0,$ splits into orthogonal direct sum of subspaces $\mathbb P_{\boldsymbol p}\big(\mathbb A^{(\lambda)}(\mathbb D^n)\big)$ indexed by the partitions $\boldsymbol p$ of $n,$ which are in one to one correspondence with the equivalence classes of the irreducible representations of the symmetric group on $n$ symbols. In this paper, we prove that each sub-module $\mathbb P_{\boldsymbol p}\big(\mathbb A^{(\lambda)}(\mathbb D^n)\big)$ is a locally free Hilbert module of rank equal to square of the dimension $\chi_{\boldsymbol p}(1)$ of the corresponding irreducible representation. It is shown that given two partitions $\boldsymbol p$ and $\boldsymbol q$, if $\chi_{\boldsymbol p}(1) \ne \chi_{\boldsymbol q}(1),$ then the sub-modules $\mathbb P_{\boldsymbol p}\big (\mathbb A^{(\lambda)}(\mathbb D^n)\big )$ and $\mathbb P_{\boldsymbol q}\big (\mathbb A^{(\lambda)}(\mathbb D^n)\big )$ are not equivalent. We prove that for the trivial and the sign representation corresponding to the partitions $\boldsymbol p = (n)$ and $\boldsymbol p = (1,\ldots,1)$, respectively, the sub-modules $\mathbb P_{(n)}\big(\mathbb A^{(\lambda)}(\mathbb D^n)\big)$ and $\mathbb P_{(1,\ldots,1)}\big(\mathbb A^{(\lambda)} \mathbb D^n)\big)$ are inequivalent. In particular, for $n=3$, we show that all the sub-modules in this decomposition are inequivalent. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2017,19 | |
dc.subject | Hilbert Modules | en_US |
dc.subject | Symmetric Functions | en_US |
dc.title | Reducing sub-modules of the Bergman module $\mathbb A^{(\lambda)}(\mathbb D^n)$ under the action of the symmetric group | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2017-19 | |
local.scientificprogram | OWLF 2017 | en_US |
local.series.id | OWP-2017-19 | |
local.subject.msc | 47 | |
local.subject.msc | 20 | |
dc.identifier.urn | urn:nbn:de:101:1-2021032310103683417519 | |
dc.identifier.ppn | 1655550640 | |