Show simple item record

dc.contributor.authorBoij, Mats
dc.contributor.authorMigliore, Juan
dc.contributor.authorMiró-Roig, Rosa M.
dc.contributor.authorNagel, Uwe
dc.date.accessioned2017-09-07T10:05:07Z
dc.date.available2017-09-07T10:05:07Z
dc.date.issued2017-07-27
dc.identifier.urihttps://arxiv.org/abs/1707.05646
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1309
dc.descriptionMSC: 13D02; 13C40; 13D40; 13E10; 14M06en_US
dc.descriptionResearch in Pairs 2017en_US
dc.description.abstractMustaţă has given a conjecture for the graded Betti numbers in the minimal free resolution of the ideal of a general set of points on an irreducible projective algebraic variety. For surfaces in $\mathbb P^3$ this conjecture has been proven for points on quadric surfaces and on general cubic surfaces. In the latter case, Gorenstein liaison was the main tool. Here we prove the conjecture for general quartic surfaces. Gorenstein liaison continues to be a central tool, but to prove the existence of our links we make use of certain dimension computations. We also discuss the higher degree case, but now the dimension count does not force the existence of our links.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2017,21
dc.subjectMinimal resolution conjectureen_US
dc.subjectMustaţă conjectureen_US
dc.subjectBetti numbersen_US
dc.subjectGorenstein idealsen_US
dc.subjectHilbert schemeen_US
dc.titleThe Minimal Resolution Conjecture on a general quartic surface in $\mathbb P^3$en_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2017-21
local.scientificprogramResearch in Pairs 2017en_US
local.series.idOWP-2017-21
local.subject.msc13
local.subject.msc14
dc.identifier.urnurn:nbn:de:101:1-2017110614185
dc.identifier.ppn1655550918


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record