dc.contributor.author | Boij, Mats | |
dc.contributor.author | Migliore, Juan | |
dc.contributor.author | Miró-Roig, Rosa M. | |
dc.contributor.author | Nagel, Uwe | |
dc.date.accessioned | 2017-09-07T10:05:07Z | |
dc.date.available | 2017-09-07T10:05:07Z | |
dc.date.issued | 2017-07-27 | |
dc.identifier.uri | https://arxiv.org/abs/1707.05646 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1309 | |
dc.description | MSC: 13D02; 13C40; 13D40; 13E10; 14M06 | en_US |
dc.description | Research in Pairs 2017 | en_US |
dc.description.abstract | Mustaţă has given a conjecture for the graded Betti numbers in the minimal free resolution of the ideal of a general set of points on an irreducible projective algebraic variety. For surfaces in $\mathbb P^3$ this conjecture has been proven for points on quadric surfaces and on general cubic surfaces. In the latter case, Gorenstein liaison was the main tool. Here we prove the conjecture for general quartic surfaces. Gorenstein liaison continues to be a central tool, but to prove the existence of our links we make use of certain dimension computations. We also discuss the higher degree case, but now the dimension count does not force the existence of our links. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2017,21 | |
dc.subject | Minimal resolution conjecture | en_US |
dc.subject | Mustaţă conjecture | en_US |
dc.subject | Betti numbers | en_US |
dc.subject | Gorenstein ideals | en_US |
dc.subject | Hilbert scheme | en_US |
dc.title | The Minimal Resolution Conjecture on a general quartic surface in $\mathbb P^3$ | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2017-21 | |
local.scientificprogram | Research in Pairs 2017 | en_US |
local.series.id | OWP-2017-21 | |
local.subject.msc | 13 | |
local.subject.msc | 14 | |
dc.identifier.urn | urn:nbn:de:101:1-2017110614185 | |
dc.identifier.ppn | 1655550918 | |