dc.contributor.author | Györfi, László | |
dc.contributor.author | Döring, Maik | |
dc.contributor.author | Walk, Harro | |
dc.date.accessioned | 2017-10-24T12:03:56Z | |
dc.date.available | 2017-10-24T12:03:56Z | |
dc.date.issued | 2017-10-16 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1312 | |
dc.description | Research in Pairs 2017 | en_US |
dc.description.abstract | A binary classification problem is considered. The excess error probability of the k-nearest neighbor classification rule according to the error probability of the Bayes decision is revisited by a decomposition of the excess error probability into approximation and estimation error. Under a weak margin condition and under a modified Lipschitz condition, tight upper bounds are presented such that one avoids the condition that the feature vector is bounded. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2017,25 | |
dc.subject | Rate of Convergence | en_US |
dc.subject | Classification | en_US |
dc.subject | Error Probability | en_US |
dc.subject | K-Nearest Neighbor Rule | en_US |
dc.title | Exact Rate of Convergence of k-Nearest-Neighbor Classification Rule | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2017-25 | |
local.scientificprogram | Research in Pairs 2017 | en_US |
local.series.id | OWP-2017-25 | |
local.subject.msc | 62 | |
dc.identifier.urn | urn:nbn:de:101:1-2017110614279 | |
dc.identifier.ppn | 1657020495 | |