dc.contributor.author | Fukshansky, Lenny | |
dc.contributor.author | German, Oleg | |
dc.contributor.author | Moshchevitin, Nikolay | |
dc.date.accessioned | 2017-10-25T07:57:32Z | |
dc.date.available | 2017-10-25T07:57:32Z | |
dc.date.issued | 2017-10-19 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1316 | |
dc.description | Research in Pairs 2017 | en_US |
dc.description.abstract | Let $\Lambda \subset \mathbb R^n$ be an algebraic lattice, coming from a projective module over the ring of integers of a number field $K$. Let $\mathcal Z \subset \mathbb R^n$ be the zero locus of a finite collection of polynomials such that $\Lambda \nsubseteq \mathcal Z$ or a finite union of proper full-rank sublattices of $\Lambda$. Let $K_1$ be the number field generated over $K$ by coordinates of vectors in $\Lambda$, and let $L_1,\dots,L_t$ be linear forms in $n$ variables with algebraic coefficients satisfying an appropriate linear independence condition over $K_1$. For each $\varepsilon > 0$ and $\boldsymbol a \in \mathbb R^n$, we prove the existence of a vector $\boldsymbol x \in \Lambda \setminus \mathcal Z$ of explicitly bounded sup-norm such that
$$\| L_i(\boldsymbol x) - a_i \| < \varepsilon$$
for each $1 \leq i \leq t$, where $\|\ \|$ stands for the distance to the nearest integer. The bound on sup-norm of $\boldsymbol x$ depends on $\varepsilon$, as well as on $\Lambda$, $K$, $\mathcal Z$ and heights of linear forms. This presents a generalization of Kronecker's approximation theorem, establishing an effective result on density of the image of $\Lambda \setminus \mathcal Z$ under the linear forms $L_1,\dots,L_t$ in the $t$-torus~$\mathbb R^t/\mathbb Z^t$. In the appendix, we also discuss a construction of badly approximable matrices, a subject closely related to our proof of effective Kronecker's theorem, via Liouville-type inequalities and algebraic transference principles. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2017,28 | |
dc.subject | Kronecker's Theorem | en_US |
dc.subject | Diophantine Approximation | en_US |
dc.subject | Heights | en_US |
dc.subject | Polynomials | en_US |
dc.subject | Lattices | en_US |
dc.title | On an Effective Variation of Kronecker’s Approximation Theorem Avoiding Algebraic Sets | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2017-28 | |
local.scientificprogram | Research in Pairs 2017 | en_US |
local.series.id | OWP-2017-28 | |
local.subject.msc | 11 | |
dc.identifier.urn | urn:nbn:de:101:1-2017111411281 | |
dc.identifier.ppn | 1658648250 | |