| dc.contributor.author | Lovejoy, Jeremy | |
| dc.contributor.author | Osburn, Robert | |
| dc.date.accessioned | 2017-10-25T08:11:07Z | |
| dc.date.available | 2017-10-25T08:11:07Z | |
| dc.date.issued | 2017-10-20 | |
| dc.identifier.uri | http://publications.mfo.de/handle/mfo/1317 | |
| dc.description | Research in Pairs 2016 | en_US |
| dc.description.abstract | Using a result of Takata, we prove a formula for the colored Jones polynomial of the double twist knots $K_{(-m,-p)}$ and $K_{(-m,p)}$ where $m$ and $p$ are positive integers. In the $(-m,-p)$ case, this leads to new families of $q$-hypergeometric series generalizing the Kontsevich-Zagier series. Comparing with the cyclotomic expansion of the colored Jones polynomials of $K_{(m,p)}$ gives a generalization of a duality at roots of unity between the Kontsevich-Zagier function and the generating function for strongly unimodal sequences. | en_US |
| dc.language.iso | en_US | en_US |
| dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
| dc.relation.ispartofseries | Oberwolfach Preprints;2017,29 | |
| dc.subject | Double Twist Knots | en_US |
| dc.subject | Colored Jones Polynomial | en_US |
| dc.subject | Duality | en_US |
| dc.title | The Colored Jones Polynomial and Kontsevich-Zagier Series for Double Twist Knots | en_US |
| dc.type | Preprint | en_US |
| dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
| dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
| dc.identifier.doi | 10.14760/OWP-2017-29 | |
| local.scientificprogram | Research in Pairs 2016 | en_US |
| local.series.id | OWP-2017-29 | |
| local.subject.msc | 57 | |
| dc.identifier.urn | urn:nbn:de:101:1-201801093146 | |
| dc.identifier.ppn | 1658648374 | |