dc.contributor.author | Helton, J. William | |
dc.contributor.author | Klep, Igor | |
dc.contributor.author | Volčič, Jurij | |
dc.contributor.author | Helton, J. William | |
dc.date.accessioned | 2017-11-06T11:08:24Z | |
dc.date.available | 2017-11-06T11:08:24Z | |
dc.date.issued | 2017-10-02 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1322 | |
dc.description | MSC 2010: 13J30; 15A22; 47A56 (Primary) | 14P10; 16U30; 16R30 (Secondary) | en_US |
dc.description | Research in Pairs 2017 | en_US |
dc.description.abstract | The free singularity locus of a noncommutative polynomial f is defined to be the sequence $Z_n(f)=\{X\in M_n^g : \det f(X)=0\}$ of hypersurfaces. The main theorem of this article shows that f is irreducible if and only if $Z_n(f)$ is eventually irreducible. A key step in the proof is an irreducibility result for linear pencils. Apart from its consequences to factorization in a free algebra, the paper also discusses its applications to invariant subspaces in perturbation theory and linear matrix inequalities in real algebraic geometry. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2017,23 | |
dc.subject | Noncommutative Polynomial | en_US |
dc.subject | Factorization | en_US |
dc.subject | Singularity locus | en_US |
dc.subject | Linear matrix inequality | en_US |
dc.subject | Spectrahedron | en_US |
dc.subject | Real algebraic geometry | en_US |
dc.subject | Realization | en_US |
dc.subject | Free algebra | en_US |
dc.subject | Invariant theory | en_US |
dc.title | Geometry of Free Loci and Factorization of Noncommutative Polynomials | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2017-23 | |
local.scientificprogram | Research in Pairs 2017 | en_US |
local.series.id | OWP-2017-23 | |
local.subject.msc | 13 | |
local.subject.msc | 15 | |
local.subject.msc | 47 | |
local.subject.msc | 14 | |
local.subject.msc | 16 | |
dc.identifier.urn | urn:nbn:de:101:1-2017110614174 | |
dc.identifier.ppn | 165677299X | |