dc.contributor.author | Detinko, Alla | |
dc.contributor.author | Flannery, Dane | |
dc.contributor.author | Hulpke, Alexander | |
dc.date.accessioned | 2017-11-27T11:28:09Z | |
dc.date.available | 2017-11-27T11:28:09Z | |
dc.date.issued | 2017-10-28 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1326 | |
dc.description | Research in Pairs 2017 | en_US |
dc.description.abstract | We give a method to describe all congruence images of a finitely generated Zariski dense group $H\leq SL(n, \mathbb{R})$. The method is applied to obtain efficient algorithms for solving this problem in odd prime degree $n$; if $n=2$ then we compute all congruence images only modulo primes. We propose a separate method that works for all $n$ as long as $H$ contains a known transvection. The algorithms have been implemented in ${\sf GAP}$, enabling computer experiments with important classes of linear groups that have recently emerged. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2017,31 | |
dc.title | Experimenting with Zariski Dense Subgroups | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2017-31 | |
local.scientificprogram | Research in Pairs 2017 | en_US |
local.series.id | OWP-2017-31 | |
local.subject.msc | 20 | |
local.subject.msc | 68 | |
dc.identifier.urn | urn:nbn:de:101:1-201801093166 | |
dc.identifier.ppn | 1658648498 | |