Show simple item record

dc.contributor.authorDetinko, Alla
dc.contributor.authorFlannery, Dane
dc.contributor.authorHulpke, Alexander
dc.date.accessioned2017-11-27T11:28:09Z
dc.date.available2017-11-27T11:28:09Z
dc.date.issued2017-10-28
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1326
dc.descriptionResearch in Pairs 2017en_US
dc.description.abstractWe give a method to describe all congruence images of a finitely generated Zariski dense group $H\leq SL(n, \mathbb{R})$. The method is applied to obtain efficient algorithms for solving this problem in odd prime degree $n$; if $n=2$ then we compute all congruence images only modulo primes. We propose a separate method that works for all $n$ as long as $H$ contains a known transvection. The algorithms have been implemented in ${\sf GAP}$, enabling computer experiments with important classes of linear groups that have recently emerged.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2017,31
dc.titleExperimenting with Zariski Dense Subgroupsen_US
dc.typePreprinten_US
dc.identifier.doi10.14760/OWP-2017-31
local.scientificprogramResearch in Pairs 2017en_US
local.series.idOWP-2017-31
local.subject.msc20
local.subject.msc68


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record