Show simple item record

dc.contributor.authorSzpond, Justyna
dc.contributor.editorMunday, Sara
dc.contributor.editorNiediek, Johannes
dc.contributor.editorCederbaum, Carla
dc.date.accessioned2017-12-07T10:51:11Z
dc.date.available2017-12-07T10:51:11Z
dc.date.issued2017-12-07
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1329
dc.description.abstractThe topic of this snapshot is interpolation. In the ordinary sense, interpolation means to insert something of a different nature into something else. In mathematics, interpolation means constructing new data points from given data points. The new points usually lie in between the already-known points. The purpose of this snapshot is to introduce a particular type of interpolation, namely, polynomial interpolation. This will be explained starting from basic ideas that go back to the ancient Babylonians and Greeks, and will arrive at subjects of current research activity.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesSnapshots of modern mathematics from Oberwolfach;2017,07
dc.rightsAttribution-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.titleA few shades of interpolationen_US
dc.typeArticleen_US
dc.identifier.doi10.14760/SNAP-2017-007-EN
local.series.idSNAP-2017-007-EN
local.subject.snapshotAlgebra and Number Theory
local.subject.snapshotGeometry and Topology
dc.identifier.urnurn:nbn:de:101:1-2017120722292
dc.identifier.ppn1657364968


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-ShareAlike 4.0 International