dc.contributor.author | Afshari, Bahareh | |
dc.contributor.author | Hetzl, Stefan | |
dc.contributor.author | Leigh, Graham E. | |
dc.date.accessioned | 2018-02-19T10:16:48Z | |
dc.date.available | 2018-02-19T10:16:48Z | |
dc.date.issued | 2018-02-19 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1333 | |
dc.description | Research in Pairs 2016 | en_US |
dc.description.abstract | We provide a means to compute Herbrand disjunctions directly from sequent calculus proofs with cuts. Our approach associates to a first-order classical proof $\pi \vdash \exists v F$, where $F$ is quantifier free, an acyclic higher order recursion scheme $\mathscr H$ whose language is finite and yields a Herbrand disjunction for $\exists v F$. More generally, we show that the language of $\mathscr H$ contains the Herbrand disjunction implicit in any cut-free proof obtained from $\pi$ via a sequence of Gentzen-style cut reductions that always reduce the weak side of a cut before the strong side. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2018,01 | |
dc.title | Herbrand’s Theorem as Higher Order Recursion | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2018-01 | |
local.scientificprogram | Research in Pairs 2016 | en_US |
local.series.id | OWP-2018-01 | |
dc.identifier.urn | urn:nbn:de:101:1-2018032020424 | |
dc.identifier.ppn | 1654581453 | |