Show simple item record

dc.contributor.authorFinashin, Sergey
dc.contributor.authorKharlamov, Viatcheslav
dc.date.accessioned2018-02-21T10:01:28Z
dc.date.available2018-02-21T10:01:28Z
dc.date.issued2018-02-21
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1334
dc.descriptionResearch in Pairs 2017en_US
dc.description.abstractWe prove that the space of pairs $(X,l)$ formed by a real non-singular cubic hypersurface $X\subset P^4$ with a real line $l\subset X$ has 18 connected components and give for them several quite explicit interpretations. The first one relates these components to the orbits of the monodromy action on the set of connected components of the Fano surface $F_\mathbb{R}(X)$ formed by real lines on $X$. For another interpretation we associate with each of the 18 components a well defined real deformation class of real non-singular plane quintic curves and show that this deformation class together with the real deformation class of $X$ characterizes completely the component.en_US
dc.description.sponsorshipResearch in Pairs 2017
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2018,02
dc.titleDeformation Classification of Real Non-Singular Cubic Threefolds with a Marked Lineen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2018-02
local.scientificprogramResearch in Pairs 2017en_US
local.series.idOWP-2018-02
local.subject.msc14
dc.identifier.urnurn:nbn:de:101:1-2018032020462
dc.identifier.ppn1654583529


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record