• Locally conformally Kähler manifolds admitting a holomorphic conformal flow 

      [OWP-2010-13] Ornea, Liviu; Verbitsky, Misha (Mathematisches Forschungsinstitut Oberwolfach, 2010-03-15)
      A manifold $M$ is locally conformally Kähler (LCK) if it admits a Kähler covering $\tilde{M}$ with monodromy acting by holomorphic homotheties. Let $M$ be an LCK manifold admitting a holomorphic conformal flow of ...
    • On Selfinjective Artin Algebras Having Generalized Standard Quasitubes 

      [OWP-2010-18] Karpicz, Maciej; Skowroński, Andrzej; Yamagata, Kunio (Mathematisches Forschungsinstitut Oberwolfach, 2010-03-18)
      We give a complete description of the Morita equivalence classes of all connected selfinjective artin algebras for which the Auslander-Reiten quiver admits a family of quasitubes having common composition factors, closed ...
    • Plethysms, replicated Schur functions and series, with applications to vertex operators 

      [OWP-2010-12] Fauser, Bertfried; Jarvis, Peter D.; King, Ronald C. (Mathematisches Forschungsinstitut Oberwolfach, 2010-03-14)
      Specializations of Schur functions are exploited to define and evaluate the Schur functions $s_\lambda [\alpha X]$ and plethysms $s_\lambda [\alpha s_\nu(X))]$ for any $\alpha$-integer, real or complex. Plethysms are then ...
    • Semi-Invertible Extensions of C*-Algebras 

      [OWP-2010-17] Manujlov, Vladimir M.; Thomsen, Klaus (Mathematisches Forschungsinstitut Oberwolfach, 2010-03-17)
      We prolonge the list of $C^*$-algebras for which all extensions by any stable separable $C^*$-algebra are semi-invertible. In particular, we handle certain amalgamations, both of $C^*$-algebras and of groups. Concerning ...
    • Shape Theory and Extensions of C*-Algebras 

      [OWP-2010-16] Manujlov, Vladimir M.; Thomsen, Klaus (Mathematisches Forschungsinstitut Oberwolfach, 2010-03-16)
      Let A, A' be separable $C^*$-algebras, $B$ a stable $\sigma$-unital $C^*$-algebra. Our main result is the construction of the pairing $[[A', A]] \times Ext^{-1/2}(A,B) \to Ext^{-1/2}(A',B)$, where $[[A', A]]$ denotes the ...
    • Stochastic mean payoff game: smoothed analysis and approximation schemes 

      [OWP-2010-22] Boros, Endre; Elbassioni, Khaled; Fouz, Mahmoud; Gurvich, Vladimir; Manthey, Bodo (Mathematisches Forschungsinstitut Oberwolfach, 2010-03-20)
      We consider two-person zero-sum stochastic mean payoff games with perfect information modeled by a digraph with black, white, and random vertices. These BWR-games games are polynomially equivalent with the classical Gillette ...
    • Unconditional Convergence of Spectral Decompositions of 1D Dirac Operators with Regular Boundary Conditions 

      [OWP-2010-21] Djakov, Plamen; Mitjagin, Boris S. (Mathematisches Forschungsinstitut Oberwolfach, 2010-03-19)