• Dirichlet Approximation and Universal Dirichlet 

      [OWP-2016-12] Aron, Richard M.; Bayart, Frédéric; Gauthier, Paul Montpetit; Maestre, Manuel; Nestoridis, Vassili (Mathematisches Forschungsinstitut Oberwolfach, 2016-08-16)
      We characterize the uniform limits of Dirichlet polynomials on a right half plane. We extend the approximation theorems of Runge, Mergelyan and Vitushkin to the Dirichlet setting with respect to the Euclidean distance and ...
    • The Initial and Terminal Cluster Sets of an Analytic Curve 

      [OWP-2016-25] Gauthier, Paul Montpetit (Mathematisches Forschungsinstitut Oberwolfach, 2016-12-21)
      For an analytic curve $\gamma : (a,b) \to \mathbb{C}$, the set of values approaches by $\gamma(t)$, as $t ↘a$ and as $t↗b$ can be any two continuua of $\mathbb{C} \cup \{\infty\}$.
    • Rational Approximation on Products of Planar Domains 

      [OWP-2016-05] Aron, Richard M.; Gauthier, Paul Montpetit; Maestre, Manuel; Nestoridis, Vassili; Falcó, Javier (Mathematisches Forschungsinstitut Oberwolfach, 2016-06-17)
      We consider $A(\Omega)$, the Banach space of functions $f$ from $ \overline{\Omega}=\prod_{i \in I} \overline{U_i}$ to $\mathbb{C}$ that are continuous with respect to the product topology and separately holomorphic, where ...
    • Spherical Arc-Length as a Global Conformal Parameter for Analytic Curves in the Riemann Sphere 

      [OWP-2016-21] Gauthier, Paul Montpetit; Nestoridis, Vassili; Papadopoulos, Athanase (Mathematisches Forschungsinstitut Oberwolfach, 2016-11-11)
      We prove that for every analytic curve in the complex plane $\mathbb{C}$, Euclidean and spherical arc-lengths are global conformal parameters. We also prove that for any analytic curve in the hyperbolic plane, hyperbolic ...