Browsing 2018 by MSC "14"
Now showing items 1-10 of 10
-
Affine Space Fibrations
[OWP-2018-19] (Mathematisches Forschungsinstitut Oberwolfach, 2018-09-05)We discuss various aspects of affine space fibrations. Our interest will be focused in the singular fibers, the generic fiber and the propagation of properties of a given smooth special fiber to nearby fibers. -
Criteria for Algebraicity of Analytic Functions
[OWP-2018-25] (Mathematisches Forschungsinstitut Oberwolfach, 2018-11-12)We consider functions defined on an open subset of a nonsingular, either real or complex, algebraic set. We give criteria for an analytic function to be a Nash (resp. regular, resp. polynomial) function. Our criteria depend ... -
Deformation Classification of Real Non-Singular Cubic Threefolds with a Marked Line
[OWP-2018-02] (Mathematisches Forschungsinstitut Oberwolfach, 2018-02-21)We prove that the space of pairs $(X,l)$ formed by a real non-singular cubic hypersurface $X\subset P^4$ with a real line $l\subset X$ has 18 connected components and give for them several quite explicit interpretations. ... -
Demailly’s Notion of Algebraic Hyperbolicity: Geometricity, Boundedness, Moduli of Maps
[OWP-2018-20] (Mathematisches Forschungsinstitut Oberwolfach, 2018-10-08)Demailly's conjecture, which is a consequence of the Green-Griffiths-Lang conjecture on varieties of general type, states that an algebraically hyperbolic complex projective variety is Kobayashi hyperbolic. Our aim is to ... -
Demailly’s Notion of Algebraic Hyperbolicity: Geometricity, Boundedness, Moduli of Maps (Revised Edition)
[OWP-2018-20.2] (Mathematisches Forschungsinstitut Oberwolfach, 2020-01-23)Demailly's conjecture, which is a consequence of the Green-Griffths-Lang conjecture on varieties of general type, states that an algebraically hyperbolic complex projective variety is Kobayashi hyperbolic. Our aim is to ... -
Global Variants of Hartogs' Theorem
[OWP-2018-24] (Mathematisches Forschungsinstitut Oberwolfach, 2018-11-06)Hartogs' theorem asserts that a separately holomorphic function, defined on an open subset of $\mathbb{C}^n$, is holomorphic in all the variables. We prove a global variant of this theorem for functions defined on an open ... -
The Magic Square of Reflections and Rotations
[OWP-2018-13] (Mathematisches Forschungsinstitut Oberwolfach, 2018-07-01)We show how Coxeter’s work implies a bijection between complex reflection groups of rank two and real reflection groups in 0(3). We also consider this magic square of reflections and rotations in the framework of Clifford ... -
A McKay Correspondence for Reflection Groups
[OWP-2018-14] (Mathematisches Forschungsinstitut Oberwolfach, 2018-07-02)We construct a noncommutative desingularization of the discriminant of a finite reflection group $G$ as a quotient of the skew group ring $A=S*G$. If $G$ is generated by order two reflections, then this quotient identifies ... -
On the Gauss Algebra of Toric Algebras
[OWP-2018-07] (Mathematisches Forschungsinstitut Oberwolfach, 2018-04-25)Let $A$ be a $K$-subalgebra of the polynomial ring $S=K[x_1,\ldots,x_d]$ of dimension $d$, generated by finitely many monomials of degree $r$. Then the Gauss algebra $\mathbb{G}(A)$ of $A$ is generated by monomials of ... -
Real Analyticity is Concentrated in Dimension 2
[OWP-2018-23] (Mathematisches Forschungsinstitut Oberwolfach, 2018-11-05)We prove that a real-valued function on a real analytic manifold is analytic whenever all its restrictions to $2$-dimensional analytic submanifolds are analytic functions. We also obtain analogous results in the framework ...