Show simple item record

dc.contributor.authorFiorelli Vilmart, Shaula
dc.contributor.authorVilmart, Gilles
dc.contributor.editorSkuppin, Lara
dc.contributor.editorJahns, Sophia
dc.contributor.editorCederbaum, Carla
dc.date.accessioned2018-03-07T08:33:51Z
dc.date.available2018-03-07T08:33:51Z
dc.date.issued2017-12-27
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1355
dc.description.abstractSimulating the dynamics of the Sun–Earth–Moon system with a standard algorithm yields a dramatically wrong solution, predicting that the Moon is ejected from its orbit. In contrast, a well chosen algorithm with the same initial data yields the correct behavior. We explain the main ideas of how the evolution of the solar system can be computed over long times by taking advantage of so-called geometric numerical methods. Short sample codes are provided for the Sun–Earth–Moon system.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesSnapshots of modern mathematics from Oberwolfach;2017,09
dc.rightsAttribution-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.titleComputing the long term evolution of the solar system with geometric numerical integratorsen_US
dc.typeArticleen_US
dc.identifier.doi10.14760/SNAP-2017-009-EN
local.series.idSNAP-2017-009-EN
local.subject.snapshotNumerics and Scientific Computing


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-ShareAlike 4.0 International