Show simple item record

dc.contributor.authorDussaule, Matthieu
dc.contributor.authorGekhtman, Ilya
dc.contributor.authorGerasimov, Victor
dc.contributor.authorPotyagailo, Leonid
dc.date.accessioned2018-03-19T13:04:47Z
dc.date.available2018-03-19T13:04:47Z
dc.date.issued2018-03-19
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1356
dc.description.abstractGiven a probability measure on a finitely generated group, its Martin boundary is a way to compactify the group using the Green's function of the corresponding random walk. We give a complete topological characterization of the Martin boundary of finitely supported random walks on relatively hyperbolic groups with virtually abelian parabolic subgroups. In particular, in the case of nonuniform lattices in the real hyperbolic space ${\mathcal H}^n$, we show that the Martin boundary coincides with the $CAT(0)$ boundary of the truncated space, and thus when n = 3, is homeomorphic to the Sierpinski carpet.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2018,03
dc.titleThe Martin Boundary of Relatively Hyperbolic Groups with Virtually Abelian Parabolic Subgroupsen_US
dc.typePreprinten_US
dc.identifier.doi10.14760/OWP-2018-03
local.scientificprogramResearch in Pairs 2017en_US
local.series.idOWP-2018-03en_US
dc.identifier.urnurn:nbn:de:101:1-2018032020486
dc.identifier.ppn1654584630


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record