dc.contributor.author | Geiges, Hansjörg | |
dc.contributor.author | Onaran, Sinem | |
dc.date.accessioned | 2018-03-21T13:26:45Z | |
dc.date.available | 2018-03-21T13:26:45Z | |
dc.date.issued | 2018-03-21 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1357 | |
dc.description.abstract | We present classification results for exceptional Legendrian realisations of torus knots. These are the first results of that kind for non-trivial topological knot types. Enumeration results of Ding-Li-Zhang concerning tight contact structures on certain Seifert fibred manifolds with boundary allow us to place upper bounds on the number of tight contact structures on the complements of torus knots; the classification of exceptional realisations of these torus knots is then achieved by exhibiting suffciently many realisations in terms of contact surgery diagrams. We also discuss a couple of general theorems about the existence of exceptional Legendrian knots. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2018,04 | |
dc.title | Exceptional Legendrian Torus Knots | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2018-04 | |
local.scientificprogram | Research in Pairs 2016 | en_US |
local.series.id | OWP-2018-04 | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2018041111551 | |
dc.identifier.ppn | 1655020471 | |