dc.contributor.author | Gaudiello, Antonio | |
dc.contributor.author | Mel'nyk, Taras A. | |
dc.date.accessioned | 2018-04-16T12:28:14Z | |
dc.date.available | 2018-04-16T12:28:14Z | |
dc.date.issued | 2018-04-16 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1359 | |
dc.description.abstract | We consider a domain $\Omega_\varepsilon\subset\mathbb{R}^N$, $N\geq2$, with a very rough boundary depending on~$\varepsilon$. For instance, if $N=3$ the domain $\Omega_\varepsilon$ has the form of a brush with an $\varepsilon$-periodic distribution of thin cylinders with fixed height and a small diameter of order $\varepsilon$. In $\Omega_\varepsilon$ a nonlinear monotone problem with nonlinear Signorini boundary conditions, depending on $\varepsilon$, on the lateral boundary of the cylinders is considered. We study the asymptotic behavior of this problem, as $\varepsilon$ vanishes, i.e. when the number of thin attached cylinders increases unboundedly, while their cross sections tend to zero. We identify the limit problem which is a nonstandard homogenized problem. Namely, in the region filled up by the thin cylinders the limit problem is given by a variational inequality coupled to an algebraic system. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2018,06 | |
dc.subject | Homogenization of rough boundaries | en_US |
dc.subject | Nonlinear monotone problems | en_US |
dc.subject | Nonlinear Signorini boundary conditions | en_US |
dc.title | Homogenization of a nonlinear monotone problem with nonlinear Signorini boundary conditions in a domain with highly rough boundary | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2018-06 | |
local.scientificprogram | Research in Pairs 2017 | en_US |
local.series.id | OWP-2018-06 | en_US |
local.subject.msc | 35 | en_US |
dc.identifier.urn | urn:nbn:de:101:1-201804279241 | |
dc.identifier.ppn | 1655259148 | |