Zur Kurzanzeige

dc.contributor.authorHerzog, Jürgen
dc.contributor.authorJafari, Raheleh
dc.contributor.authorNasrollah Nejad, Abbas
dc.date.accessioned2018-04-25T09:49:51Z
dc.date.available2018-04-25T09:49:51Z
dc.date.issued2018-04-25
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1360
dc.description.abstractLet $A$ be a $K$-subalgebra of the polynomial ring $S=K[x_1,\ldots,x_d]$ of dimension $d$, generated by finitely many monomials of degree $r$. Then the Gauss algebra $\mathbb{G}(A)$ of $A$ is generated by monomials of degree $(r-1)d$ in $S$. We describe the generators and the structure of $\mathbb{G}(A)$, when $A$ is a Borel fixed algebra, a squarefree Veronese algebra, generated in degree $2$, or the edge ring of a bipartite graph with at least one loop. For a bipartite graph $G$ with one loop, the embedding dimension of $\mathbb{G}(A)$ is bounded by the complexity of the graph $G$.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2018,07
dc.subjectGauss mapen_US
dc.subjectGauss algebraen_US
dc.subjectBirational morphismen_US
dc.subjectBorel fixed algebraen_US
dc.subjectSquarefree Veronese algebraen_US
dc.subjectEdge ringen_US
dc.titleOn the Gauss Algebra of Toric Algebrasen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2018-07
local.scientificprogramResearch in Pairs 2018en_US
local.series.idOWP-2018-07en_US
local.subject.msc13en_US
local.subject.msc14en_US
local.subject.msc05en_US
dc.identifier.urnurn:nbn:de:101:1-201804279269
dc.identifier.ppn1655259458


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige