Show simple item record

dc.contributor.authorHerzog, Jürgen
dc.contributor.authorJafari, Raheleh
dc.contributor.authorNasrollah Nejad, Abbas
dc.date.accessioned2018-04-25T09:49:51Z
dc.date.available2018-04-25T09:49:51Z
dc.date.issued2018-04-25
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1360
dc.description.abstractLet $A$ be a $K$-subalgebra of the polynomial ring $S=K[x_1,\ldots,x_d]$ of dimension $d$, generated by finitely many monomials of degree $r$. Then the Gauss algebra $\mathbb{G}(A)$ of $A$ is generated by monomials of degree $(r-1)d$ in $S$. We describe the generators and the structure of $\mathbb{G}(A)$, when $A$ is a Borel fixed algebra, a squarefree Veronese algebra, generated in degree $2$, or the edge ring of a bipartite graph with at least one loop. For a bipartite graph $G$ with one loop, the embedding dimension of $\mathbb{G}(A)$ is bounded by the complexity of the graph $G$.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2018,07
dc.subjectGauss mapen_US
dc.subjectGauss algebraen_US
dc.subjectBirational morphismen_US
dc.subjectBorel fixed algebraen_US
dc.subjectSquarefree Veronese algebraen_US
dc.subjectEdge ringen_US
dc.titleOn the Gauss Algebra of Toric Algebrasen_US
dc.typePreprinten_US
dc.identifier.doi10.14760/OWP-2018-07
local.scientificprogramResearch in Pairs 2018en_US
local.series.idOWP-2018-07en_US
local.subject.msc13en_US
local.subject.msc14en_US
local.subject.msc05en_US
dc.identifier.urnurn:nbn:de:101:1-201804279269
dc.identifier.ppn1655259458


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record