dc.contributor.author | Downey, Rod | |
dc.contributor.author | Melnikov, Alexander | |
dc.contributor.author | Ng, Keng Meng | |
dc.date.accessioned | 2018-04-26T09:23:09Z | |
dc.date.available | 2018-04-26T09:23:09Z | |
dc.date.issued | 2018-04-26 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1361 | |
dc.description.abstract | We prove that for every computable limit ordinal $\alpha$ there exists a computable linear ordering $\mathcal{A}$ which is $\Delta^0_\alpha$-categorical and $\alpha$ is smallest such, but nonetheless for every isomorphic computable copy $\mathcal{B}$ of $\mathcal{A}$ there exists a $\beta< \alpha$ such that $\mathcal{A} \cong_{\Delta^0_\beta} \mathcal{B}$. This answers a question left open in the earlier work of Downey, Igusa, and Melnikov. We also show that such examples can be found among ordered abelian groups and real-closed fields. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2018,08 | |
dc.title | Categorical Linearly Ordered Structures | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2018-08 | |
local.scientificprogram | Research in Pairs 2018 | en_US |
local.series.id | OWP-2018-08 | en_US |
local.subject.msc | 03 | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2018052914553249014816 | |
dc.identifier.ppn | 1657010511 | |