Zur Kurzanzeige

dc.contributor.authorDowney, Rod
dc.contributor.authorMelnikov, Alexander
dc.contributor.authorNg, Keng Meng
dc.date.accessioned2018-04-26T09:23:09Z
dc.date.available2018-04-26T09:23:09Z
dc.date.issued2018-04-26
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1361
dc.description.abstractWe prove that for every computable limit ordinal $\alpha$ there exists a computable linear ordering $\mathcal{A}$ which is $\Delta^0_\alpha$-categorical and $\alpha$ is smallest such, but nonetheless for every isomorphic computable copy $\mathcal{B}$ of $\mathcal{A}$ there exists a $\beta< \alpha$ such that $\mathcal{A} \cong_{\Delta^0_\beta} \mathcal{B}$. This answers a question left open in the earlier work of Downey, Igusa, and Melnikov. We also show that such examples can be found among ordered abelian groups and real-closed fields.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2018,08
dc.titleCategorical Linearly Ordered Structuresen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2018-08
local.scientificprogramResearch in Pairs 2018en_US
local.series.idOWP-2018-08en_US
local.subject.msc03en_US
dc.identifier.urnurn:nbn:de:101:1-2018052914553249014816
dc.identifier.ppn1657010511


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige