Show simple item record

dc.contributor.authorDowney, Rod
dc.contributor.authorMelnikov, Alexander
dc.contributor.authorNg, Keng Meng
dc.date.accessioned2018-04-26T09:23:09Z
dc.date.available2018-04-26T09:23:09Z
dc.date.issued2018-04-26
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1361
dc.description.abstractWe prove that for every computable limit ordinal $\alpha$ there exists a computable linear ordering $\mathcal{A}$ which is $\Delta^0_\alpha$-categorical and $\alpha$ is smallest such, but nonetheless for every isomorphic computable copy $\mathcal{B}$ of $\mathcal{A}$ there exists a $\beta< \alpha$ such that $\mathcal{A} \cong_{\Delta^0_\beta} \mathcal{B}$. This answers a question left open in the earlier work of Downey, Igusa, and Melnikov. We also show that such examples can be found among ordered abelian groups and real-closed fields.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2018,08
dc.titleCategorical Linearly Ordered Structuresen_US
dc.typePreprinten_US
dc.identifier.doi10.14760/OWP-2018-08
local.scientificprogramResearch in Pairs 2018en_US
local.series.idOWP-2018-08en_US
local.subject.msc03en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record