Show simple item record

dc.contributor.authorKlüppelberg, Claudia
dc.contributor.authorSönmez, Ercan
dc.date.accessioned2018-05-17T13:31:36Z
dc.date.available2018-05-17T13:31:36Z
dc.date.issued2018-05-17
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1362
dc.description.abstractWe extend previous work of max-linear models on finite directed acyclic graphs to infinite graphs, and investigate their relations to classical percolation theory. We formulate results for the oriented square lattice graph $\mathbb{Z}^2$ and nearest neighbor bond percolation. Focus is on the dependence introduced by this graph into the max-linear model. As a natural application we consider communication networks, in particular, the distribution of extreme opinions in social networks.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2018,09
dc.subjectBernoulli bond percolationen_US
dc.subjectExtreme value theoryen_US
dc.subjectGraphical modelen_US
dc.subjectInfinite graphen_US
dc.subjectPercolationen_US
dc.subjectRecursive max-linear modelen_US
dc.titleMax-Linear Models on Infinite Graphs Generated by Bernoulli Bond Percolationen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2018-09
local.scientificprogramResearch in Pairs 2018en_US
local.series.idOWP-2018-09en_US
local.subject.msc60en_US
local.subject.msc62en_US
dc.identifier.urnurn:nbn:de:101:1-2018062710092879677463
dc.identifier.ppn1653383399


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record