Show simple item record

dc.contributor.authorDanchin, Raphaël
dc.contributor.authorFanelli, Francesco
dc.contributor.authorPaicu, Marius
dc.date.accessioned2018-05-28T07:27:07Z
dc.date.available2018-05-28T07:27:07Z
dc.date.issued2018-05-28
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1363
dc.description.abstractWe are concerned with the existence and uniqueness of solutions with only bounded density for the barotropic compressible Navier-Stokes equations. Assuming that the initial velocity has slightly sub-critical regularity and that the initial density is a small perturbation (in the $L^\infty$ norm) of a positive constant, we prove the existence of local-in-time solutions. In the case where the density takes two constant values across a smooth interface (or, more generally, has striated regularity with respect to some nondegenerate family of vector-fields), we get uniqueness. This latter result supplements the work by D. Hoff in [26] with a uniqueness statement, and is valid in any dimension $d\geq2$ and for general pressure laws.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2018,10
dc.subjectCompressible Navier-Stokes equationsen_US
dc.subjectBounded densityen_US
dc.subjectMaximal regularityen_US
dc.subjectTangential regularityen_US
dc.subjectLagrangian formulationen_US
dc.titleA Well-Posedness Result for Viscous Compressible Fluids with Only Bounded Densityen_US
dc.typePreprinten_US
dc.identifier.doi10.14760/OWP-2018-10
local.scientificprogramOWLF 2017en_US
local.series.idOWP-2018-10en_US
local.subject.msc35en_US
local.subject.msc76en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record