dc.contributor.author | Randriamaro, Hery | |
dc.date.accessioned | 2018-06-26T08:45:37Z | |
dc.date.available | 2018-06-26T08:45:37Z | |
dc.date.issued | 2018-06-25 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1368 | |
dc.description.abstract | The quon algebra is an approach to particle statistics in order to provide a theory in which the Pauli exclusion principle and Bose statistics are violated by a small amount. The quons are particles whose annihilation and creation operators obey the quon algebra which interpolates between fermions and bosons. In this paper we generalize these models by introducing a deformation of the quon algebra generated by a collection of operators $a_{i,k}$, $(i,k) \in \mathbb{N}^* \times [m]$, on an infinite dimensional vector space satisfying the deformed $q$-mutator relations $a_{j,l} a_{i,k}^{\dag} = q _{i,k}^{\dag} a_{j,l} + q^{\beta_{-k,l}} \delta_{i,j}$. We prove the realizability of our model by showing that, for suitable values of $q$, the vector space generated by the particle states obtained by applying combinations of $a_{i,k}$'s and $a_{i,k}^{\dag}$'s to a vacuum state $|0\rangle$ is a Hilbert space. The proof particularly needs the investigation of the new statistic $\mathtt{cinv}$
and representations of the colored permutation group. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2018,11 | |
dc.subject | Infinite statistics | en_US |
dc.subject | Quon algebra | en_US |
dc.subject | Hilbert space | en_US |
dc.subject | Colored permutation group | en_US |
dc.title | A Deformed Quon Algebra | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2018-11 | |
local.scientificprogram | OWLF 2017 | en_US |
local.series.id | OWP-2018-11 | en_US |
local.subject.msc | 05 | en_US |
local.subject.msc | 81 | en_US |
local.subject.msc | 15 | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2018062711293172503206 | |
dc.identifier.ppn | 1653384719 | |